Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
Authors
Abstract:
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description of a reservoir. The aim of this paper was core flow unit determination by using a new intelligent method. Flow units were determined and clustered at specific depths of reservoir by using a combination of artificial neural network (ANN) and a metaheuristic optimization algorithm method. At first, artificial neural network (ANN) was used to determine flow units from well log data. Then, imperialist competitive algorithm (ICA) was employed to obtain the optimal contribution of ANN for a better flow unit prediction and clustering. Available routine core and well log data from a well in one of the Iranian oil fields were used for this determination. The data preprocessing was applied for data normalization and data filtering before these approaches. The results showed that imperialist competitive algorithm (ICA), as a useful optimization method for reservoir characterization, had a better performance in flow zone index (FZI) clustering compared with the conventional K-means clustering method. The results also showed that ICA optimized the artificial neural network (ANN) and improved the disadvantages of gradient-based back propagation algorithm for a better flow unit determination.
similar resources
identifying flow units using an artificial neural network approach optimized by the imperialist competitive algorithm
the spatial distribution of petrophysical properties within the reservoirs is one of the most importantfactors in reservoir characterization. flow units are the continuous body over a specific reservoirvolume within which the geological and petrophysical properties are the same. accordingly, anaccurate prediction of flow units is a major task to achieve a reliable petrophysical description of a...
full textAn Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Oil Flow Rate of the Wells
Flow rates of oil, gas and water are most important parameters of oil production that is detected by Multiphase Flow Meters (MFM). Conventional MFM collects data on long-term, because of the radioactive source is used for detection and in unmanned location used due to being away from wells. In this work, a new method based on feed-forward artificial neural network (ANN) and Imperialist Competit...
full textPredicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm
Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn) contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network...
full textEvolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir
Multiphase flow meters (MPFMs) are utilized to provide quick and accurate well test data in numerous numbers of oil production applications like those in remote or unmanned locations topside exploitations that minimize platform space and subsea applications. Flow rates of phases (oil, gas and water) are most important parameter which is detected by MPFMs. Conventional MPFM data collecting is do...
full textPrediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
full textCarbon Monoxide Prediction Using Artificial Neural Network And Imperialist Competitive Algorithm
Carbon monoxide (CO) is one of the main air pollutants produced by incomplete combustion process particularly in the urban areas and exposing to the CO polluted environments will definitely affect human health. Therefore, providing a comprehensive computer modeling based on the current and previous related information for further study, analyses and decision making is of paramount importance. T...
full textMy Resources
Journal title
volume 3 issue 3
pages 11- 25
publication date 2014-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023